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EXPANSION INTO VACUUM OF A GASEOUS ELLIPSOID 
WITH REPULSION BETWEEN THE PARTICLES* 

Iu.1. LYSIKOV 

Methods of the analytic theory of differential equations as well as the numerical 
methods are used to study the problem of adiabatic expansion of a homogeneous cloud 
of perfect gas into vacuum. The Cartesian and Lagrangian coordinates of the gas 
particles are connected by a linear relation, and the particles have achargewhich 
generates a macroscopic field within the cloud, without however affecting the prop- 
erties of the perfect gas. 

The problem of expansion of an inviscid gas cloud with the ellipsoidal level surfaces is 
well known and has a number of solutions such as that due to L.I. Sedov /l/, solution of the 
problem of gravitating gas /2/ and solution of a particular problem of adiabatic expansion of 
a cloud in the presence of a constraint of the type 

zi = 3 Fikak 
k 

connecting the Lagrangian ai and Cartesian zi coordinates of the particles /3/. The method 
of /3/ leads to a simple system of ordinary differential equations for the quantities Pip, and 
the system was solved analytically for a number of nontrivial cases /4/. Using the formula- 
tion of /3/, the problem can be generalized to the case when a gravitational attractionexists 
between the particles and the gas density is constant over the volume of the cloud /5/. Here 
the author uses the methods of analytic theory of differential equations to carry out a 
detailed investigation of the possible transitions of the ellipsoid between the states deter- 
mined by the set of singular points of the corresponding system of equations. Thus the solu- 
tion /6/ of the problem of motion of a gravitating dust cloud and solutionsonthesubmanifolds 
with fixed values of certain variables, were used to study the motions corresponding to oscil- 
latory disintegration of an ellipsoid and being of interest in astrophysics. The case in 
which the particles experience repulsion instead of attraction corresponds to the motion of a 
gas cloud with particles carrying the same charge. Such a problem arises in plasma physics 
and in the corresponding branches of astrophysics, in particular in the study of the processes 
taking place near the centers of active cosmic objects such as Seifert galaxies and quasars. 

The following initial equations are used in our study of the motion of gas. The equat- 
ions of continuity and impulse 

(1) 

and the expression for the potential generated by the ellipsoid charged uniformly over the 
volume, and the internal points of the ellipsoid 

Here di denote the semi-axes of the gaseous ellipsoid, cc8 is a coefficient depending on the 
cloud charge density, Q and mare the charge and mass of the gas particles respectively, and 
xi' are the coordinates of a point in the coordinate system whose axes coincide with the 
directions of the semi-axes. 
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We assume that the gas density is constant over the cloud volume up to its boundary, 
while the temperature and pressure and quadratic functions of the coordinates with a maximum 
at the cloud center. The gas is assumed perfect and the process of expansion (compression) 
adiabatic, with the adiabatic index y, i.e. d (Plpv)ldt = 0. The gas particles possess a 
charge of equal sign and strength, creating a macroscopis field within the cloud. We shall 
assume that this does not imply the necessity of allowing, in the local thermodynamic formula- 
tion,forthe deviations of the gas from perfect, i.e. the condition n<(kT/qa)S where n is 
the particle number density, k is the Boltzmann constant and Tis the gas temperature, holds. 
We assume that the following relation holds for the gas motion: 

Xi = 3 F*Uk 
k 

(3) 

where xi are the Cartesian coordinates of the gas sections, ak are the Lagrangian coordinates 

and Fik are functions of time. From (l)-(3) we obtain the following system of equations: 

F;;=o,(y-_)F;:+oa5C(~+~+~)x Fnk ds (4) 

[(dla + 8) (dz* + s) (dsa + s)]“’ 

P= 
3M(y - 1)(1 - Q%aZ) W$;' 

4na&lv 
> cp=detIIFikI) 

Here Lik is the rotation matrix which superimposes the coordinate axes on the directions of 
the ellipsoid semi-axes, M is the mass of the gas cloud and Wis the specific energy of the 
gas at the initial instant at the cloud center. In the course of deriving (4) wehaveutilized 
the first law of thermodynamics, and the above equations can be written in the form of the 
Hamilton-Jacobi equations where the Hamiltonian is given by the expression 

’ (‘) = j [(bL A- 1 s ) (dc,z ;s) (d,a + s)]“’ 

We analyze the solutions of the system of equations (4) using the methods of the analytic 
theory of differential equations. The Hamiltonian of the system in question is always posit- 
ive and there are no solutions of the problem with negative energy. In the coordinates WI: 

Pi 

Pi*= (al” (q)l-~ + Qu (qjpa ’ ’ = 
lJ (9) 

wp (9Y-v + u 
yi+ $L= (a,V (d’-v + %U (44)“’ 

%J (9) 1 Qo= (& Qk2)‘i 

the system (4) assumes the form 

-$ = V (Pi* - Yi x ykpk’) 
~=“(l-,CPi*~~~+(Y-l)~~ 

i 
dp,’ -= 
4 Ci 

k 

hi, + qq [ 

and in coordinates WZ: 

U= 
u (4 

a,a,‘V (#-V + CJ (9) 

( yi=Q” 

w = a1v WV+ aJ (4) dQ = PO 

PO” 

, 
’ lft 4%v (Y) 

p. _ &By 

k 

(5) 
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the system (4) becomes 

(6) 

k 
way, 1 

dP, 
r=W 

2 
k 

Let us introduce the notation 

v,* - c E = SgIl (VP*) 

I 

and analyze the singularities of the systems (5) and (6), retaining the notation(*). The con- 
dition V = 0, u = 1 determines the singular points K,. When V=O, the difference between 
the ellipsoid semi-axes is considerable. The condition u = 1 corresponds to large volume of 
the cloud, or to the potential energy in the electric field exceeding considerably the energy 
of thermal motion of the particles. The case of positive E corresponds to an increase in the 
cloud volume, and negative E to a decrease in the volume. The points K-, have an incoming 
separatrix for which U = 1, and the outgoing separatrix for which V = 0. The change in the 
sign of e converts the incoming separatrix into the outgoing one, and vice versa. From the 
physical point of view it is clear that the system in question with repulsion cannot change 
from expansion to compression, therefore only one branch of transitions K_,+ K1 is possible 
which is not repeated after its first appearance. For the points K, we have twoeigenvalues 
of the form VP*, (1 - y) VP*, and the separatrices mentioned above correspond to these eigen- 
values. Let us introduce the notation 

v,= c I-$- 1 P=sgn(V,) 
1 

t 

We have physically interesting singularities M,,a,M,,a, Nosh, N,J in the coordinates Wz. The 
singularities N,,b(V = 0, u = 1, w = 0) have two nonzero eigenvalues: (1 - y) VP, V,. The case 
w = 0 corresponds to the kinetic energy of the motion of gas exceeding considerably the poten- 
tial energy in the electric field and the energy of thermal motion of the particles. This is 
possible in the case of unbounded inertial expansion, or when the initial motion of gas with 
nonzero velocity takes place from infinity towards the center. The above eigenvalues have 
different signs. For fl = 1 we have the incoming separatrix with A,, and the outgoing 
separatrix with he. When fi = - 1, the separatrices interchange their positions, and for 
h, we have V= 0, w = 0, and hz -U = 1, w = 0. 

The singularties N,,o (w = 0, u = 0, V = 0) have eigenvalues (y - 1) V,, (1 -y) V,, V,. When 
p >0 , this yields one incoming and two outgoing separatrices, and for p <0 it is the other 
way round. The condition u = 0 corresponds either to the energy of thermal particle motion 
exceeding their energy in the electric field, or to a very small volume of the cloud. For the 
separatrix with the first eigenvalue we have u) = 0,V = 0, for the second u = 0, V = 0 and for 
the third w = 0, u = 0. The singularities M,,B (Pi = flyi, w = 0, u = 0) have the eigenvalues 
-3 (y- 1) PV, (3~ - 4) @I', - BV,-2BV. When Pi = fJytr the macroscopic rotational motion of the 
gas is absent. The set of eigenvalues is such, that both incoming and outgoing separatrices 
are present. when Y > ‘ia Jfo,l I has one incoming and M,,_, one outgoing separatrix. When 

Y < 41s MD.1 has not outgoing separatrices and is attractive, while M,,_, has no incominq 
separatrices and is repulsive. The incoming separatrix of the point M,,, occurs, at y > 413 > 
when Pi = byi, w = 0. The singularities M,,B (Pi = Byi, w = 0, u = 1) have the eigenvalues 
PV (4-3y), -fiV, -2fiV. When y > 4/,, point M,,, has not outgoing separatrices and is attract- 
ive, while M,,_, has no incoming separatrices and is repulsive. When y < ai,, the point M,,, 

*)Bogoiavlenskii 0.1. Oscillatory mode of expansion of a gaseous cloud into vacuum. Preprint 
In-ta teoreticheskoi fiziki Akad. Nauk SSSR, Chernogolovka, 1975. 
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has one outgoing and M1,_l one incoming separatrix, an d we have for these separatrices w = 0, 
Pi = byi. Thus on passing through the value y = 4/8 the parts played by the points M,,b and 
Mo,b are interchanged. The points M,,r correspond to a more or less uniform expansion along 

all three axes, and the points M,,, correspond to an expansion with pronounced ellipticity. 
Solution of the systems of equations on the submanifolds v=o,u,=o(U=o,v=o) can 

be carried out in the same manner (*). The solution on the submanifold u = 1 should corres- 
pond to the expansion of a charged dust cloud. For such a system the impossiblityofachange- 
over from expansion to contraction is valid, since there are no forces which could force the 
gas to move back towards the center. 

Let us give the possible transitions between the singularities of the system along the 

separatrices. The scheme of transitions for the case y >418 is given in Fig-l. 

Fig.1 Fig.2 

The characteristic feature of this system is, that it does not contain repeated links. 
The motion can originate at any position of the scheme to end always at the point Ml,,. Fig.2 
depicts the scheme of possible transitions for y<VQ. In this case the cyclic repetition 
of the link M1,_l + Nls_l, i.e. a quasi-periodic process of transitions between the states of 
small and large ellipticity, is possible during the contraction. 

We illustrate the behavior of the model in question using the numerical examples. Con- 
sider an ellipsoid of revolution rotating or not rotating about one of the axes (longitudinal 
axis of the ellipsoid). In this case the matrix contains only three distinct elements: F,, = 

Fae, F,,, Flz = - Fa1. We write the system of differential equations for these elements in the 
form 

(7) 

When rotation is absent, then the behavior of the cloud under a given initial push towardsthe 
center and at two different values of the charge density (the density az/a, changes by 10 
times) is shown in Fig.3 as the dependence of the semi-axes on time. Here y = s/I, therefore 
the case in question corresponds to the first of the transition diagrams given above. Fig.3 
demonstrates the passage of the system to the attraction point M,,,. 

*) See the previous footnote. 
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Fig.3 Fig.4 

The quantities F,, (curves 1 and 2) and P,, (curves 3 and 4) are plotted along the vertical, 
and their values characterize the size of the longitudinal and transverse axis, respectively. 
The passage from the curves 1, 3 to 2, 4 takes place with a lo-fold increaseinthechargedensity. 
We see that the rate of divergence of the axis sizes is greater at the lower charge densities, 
(a more intense increase in the ellipticity, together with a general increase of the cloud 
volume). Fig.4 depicts the behavior of gas with rotation, with the parameters corresponding 
to the curves 1 and 3 of Fig.3. The values of the transverse and longitudinal axes are plot- 
ted in dimensionless parameters along the vertical axis (curves 1 and 2), as well as the ratio 
of the actual volume of the ellipsoid to its initial value (curve 3) and the angular velocity 
of rotation (curve 4). The transitions of Fig.4 also belong to the first diagram (the chain 
of transitions K_,+K,+ M,,, is almost the same). We note that the rate of growth of the 
ellipticity is slower than that in the case without rotation. 

The properties shown and schemes of transitions given are of interest when consideringthe 
problem of inertial compression of plasma. The realisation of one or another transition link 
is determined by the choice of the initial conditions, and this makes it possible to vary the 
sequence of transitions of the ellipsoid form. The presence of a charge leads to increased 
sphericity of the gas cloud. The property of transition from the expansion with small ellip- 
ticity to expansion with large ellipticity during the passage from the values of the adiabatic 
index greater than 4/, to those smaller than 4/3 is of interest. 
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